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Fig. 3. Two-dielectric transmission line considered in the example of
Section VII.
TABLE 1
x =2 by = 0.241840E 02b; = 0. 736682 E 02 b; = 0. 964940 E 05
f (GHz) B (m™) Ri(m™)  Rs(m™) Rs (m™)
0.5 12.093 0.001 0.000 0.000
1 24,191 0.007 0.000 0.000
2 48.427 0.059 0.000 0.000
3 72.753 0.201 0.002 0.000
4 97.217 0.481 0.010 0.000
5 121.870 0.950 0.029 —0.001
6 146.766 1.662 0.071 —0.004
7 171.963 2.676 0.149 —-0.013
8 197.523 4.051 0.279 —-0.037
9 223.504 5.848 0.478 —0.092
10 249.963 8.124 0.757 —0.208

Note: B, = B - b19 Ry =8 — (blﬂ +b393) R: =8 — (le +
b3 + b:Q5).
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Fig. 4. Power series approximations to the phase constant of the line

represented in Fig. 3.

quency; this is a TM mode with components H, = H, E,, and E..
A standard procedure enables us to obtain the dispersion equation:

tan (kWa) ® tan [k®(d — a}
0 - €@

A

where superseript (1) refers to the dielectric layer 0 <y < a and
superscript (2) to the dielectric layer ¢ < y < d and for each layer

k? = wlieuo — B2

Next the first three coefficients of the expansion for g, that is
by, bs, and bs, were calculated, the last one with the sole purpose of
assessing the speed of convergence.

The coefficients were obtained by the method developed in Sec-
tions V and VI, using the zero-order coefficient H, as the scale con-
stant and imposing a frequency-independent current in the con-
ductor y = 0.

The numerical computation was carried out for two cases corre-
sponding to the following parameters:

d=1cm
a = 0.5 cm
e® = vacuum permittivity
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x = D/e® = 2;20.

The normalization frequency fo = wo/27 was taken to be 1 GHaz.
For ¢ /e® = 2 the results are given in Table I; examination of
this table shows that the error E; is less than 1/1000 of 8 within the
frequency range considered.
For ®/e® = 20 the results are shown in Flg 4; it is seen that the
accuracy of the approximation degrades very qulckly from the point
where E; changes from positive to negative.

VIII. CONCLUSIONS

In the preceding sections it has been shown that for a transmission
line with two conductors and a dielectric medium consisting of various
homogeneous regions it is possible to expand all field functions as a
power series of the frequency.

The main interest of this expansion appears to be the possibility
of estimating an upper limit to the frequency band in which the dis-
persion does not exceed a specified value.

In this short paper the analysis has been confined to general as-
pects of the proposed expansion. The problem of computing the
higher order terms for transmission lines of practical interest has not
been considered.
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Useful Matrix Chain Parameter Identities for the
Analysis of Multiconductor Transmission Lines

CLAYTON R. PAUL, MEMBER, IEEE

Abstract—By utilizing state variable theory, certain useful matrix
identities involving submatrices of the chain parameter matrix for
a multiconductor transmission line are shown. These identities are
extensions of familiar properties associated with two-conductor
lines to multiconductor lines and are used to formulate the complete
solution for the terminal currents when the line is terminated by
linear networks. The identities allow a simplified solution for these
currents and reduce numerous redundant time-consuming matrix
multiplications. In addition, the correspondence between familiar
terms for the two-conductor case and the multiconductor case is
shown.

I. INTRODUCTION

The subject of coupled transmission lines arises in the study of
many microwave related structures. Transmission lines in a homo-
geneous medium ocecur in the study of strip lines whereas applica~
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tions involving transmission lines in an inhomogeneous medium
oceur in the study of microstrip lines. For transmission lines in
a homogeneous medium, the principal mode of propagation is the
TEM mode whereas for an inhomogeneous medijum, the predominant
mode of propagation is taken to be the “quasi-TEM’’ mode. For
either mode of propagation, the per unit length distributed param-
eters in the transmission line representation are computed by
assuming that the electric and magnetic field intensity vectors are
transverse to the direction of propagation. Therefore, at each point
along the line, these vectors satisfy static distributions [1].

The matrix chain parameter (or ABCD parameter) representation
of the transmission line is often used in characterizing the line for
the TEM (or “quasi-TEM”) mode of propagation as a multiport
network. The purpose of this short paper is to extend certain well-
known identities involving elements of the ehain parameter matrix
for the two-conductor line to the multiconductor case. In addition,
a convenient matrix formulation is shown which allows an efficient
numerical solution for the terminal currents when multiport networks
are connected by the line. ‘

An (n + 1) conductor, uniform transmission line is considered
with the (n + 1)st conductor (usually an infinite ground plane or
overall shield) designated as the reference conductor. The dielectric
medium surrounding the conductors is assumed to be linear and
isotropic but may be inhomogeneous. The line is considered to be
uniform in that all (n 4 1) conductors have uniform cross sections
along their lengths, are parallel to each other and the z direction,
and, in the case of an inhomogeneous medium, the characteristics
of the medium exhibit no cross-sectional variation with z and are
therefore independent of z. The line is of total length £. For sinusoidal
excitation, the voltage of the ¢th conductor with respect to the
reference conductor is denoted by V;(z,t) = V,(z)e* and the cur-
rent associated with the 7th conductor and directed in the positive
z direction is denoted by g.(z,f) = I.(z)e™t V.(z) and I;(z) are
complex valued and functions of z only with ¢ =1,+++,n. The
transmission line is described for the TEM (or “quasi-TEM’’)
mode of propagation and the sinusoidal steady state by the following
set of In-coupled first-order complex ordinary differential equa-
tions [17:

V@) O —Z|[ Vi)
. = . (1)
I(x) ~-¥Y .0, I(z)
A matrix M with m rows and p colurins is of order m X p. The
element in the sth row and jth column of M is designated by [M7J;;
with ¢ =1,--m and j = 1,--+,p. The n X 1 complex-valued
vectors V(z) and I{z) have entries [V(z)], = V.(z) and [I(z) ], =
I;(z) in the sth rows, and the first derivative of a vector V{(z) with
respect to z is denoted by V(). An m X p zero matrix with zeros
in every position is denoted by 0y, i.e., [x0p L, = 0 for i = 1,-++.m
andj = 1,++« p.

The n X n complex symmetric matrices Z and Y are the per unit
length impedance and admittance matrices, respectively. These
matrices are independent of z, since the line is assumed to be uniform,
and are separable as

Z = R, + joL; + joL
Y=G+joC

(22)
(2b)

where the n X n real matrices R,, L,, L, G, C are the per unit length
conductor resistance, conductor internal inductance, external in-
ductance, conductance, and capacitance matrices, respectively [1].
R. and L. are symmetric and result from imperfect conductors so
that for (n + 1) perfect conductors, R, = .0, and L, = ,0, [1].
For (n 4 1) perfect conductors, G, L, and C are.computed by
assuming that the electric and magnetic field intensity vectors lie
in planes perpendicular to = aid at each frequency satisfy static
distributions at each x along the line [1]. In addition, it can be
shown that G, L, and C are symmetric for a homogeneous medium

or an inhomogeneous medium [27] and for a lossless medium G =

«0n. G and C are of the form [Gli = 2, .2 Guy [Gli = —gu
[Cl= 20,2 ¢y, [Cly = —ci, where gi,cii and giy,ci; are the per
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unit length conductances and capacitances between the 7th con-
ductor and the reference conductor and between the ith conductor
and the jth conductor, respectively with 4,j = 1,-++;n [27]. For
transmission lines consisting of (n + 1) perfect conductors in
a homogeneous medium characterized by the scalar permittivity e,
permeability g, and conductivity ¢, it may be shown that LC =
wel, and GL = oul, where 1, is the n X n identily matrix with
ones on the main diagonal and zeros elsewhere [5].

II. THE MATRIX CHAIN PARAMETERS

- Since (1) is a set of first-order ordinary constant-coefficient
differential equations in state variable form, the solution is well
known [3] and is given by

V) Vizo)
- @@ — ) @)

1 (z0)

where the 2n X 2n complex matrix ®(z — z,) is the state. transi-
tion matrix or chain parameter matrix and o is some arbitrary fixed
point along the line with = > x,. In addition, the state transition
matrix ®(x — zo) has the property ®(0) = 1, where 1,, is the
2n X 2n identity matrix with [12. ], = 1 and [1:2],, = 0 for 4,j =
1,--+,2n and 7 ## j [3]. Without loss of generality we may take
z = &£ and zo = 0 in (3) resulting in the overall chain parameter
matrix of the line ®(£). Additionally, it can be shown that the
inverse of the state transition matrix or chain pararneter matrix is
given by & l(x — zo) = ®(z; — z) where the inverse of a matrix
M is denoted by M~ [3]. Therefore, ®7*(£) = @ (~L).

The chain parameter matrix for uniform lines can be obtained
easily since Z and Y in (1) are independent of z. Differentiating the

‘ I(x)

second equation of (1) with respect to z, Iz) = —YV(z), and
substituting the first equation of (1) results in
I(xy = YZI(z). 4)

One may define a change of variables as I(z) = TV (z) where T
is an n X n nonsingular complex matrix and I.(2) is an n X 1
vector of “‘mode currents.”” Substituting this in (4) yields

L.(x) = TYZTL,(z). (5)

If a similarity transformation T can be found which diagonalizes
the matrix product ¥Z as

TYZT = 4 4 (6)

where y?isann X n diagonal matrix with [y*J;; = v,"and [v2];, =0
for 4,j = 1,-++;n and ¢ # j, then (5) becomes a set of » uncoupled
equations and the solution to (4) can be obtained easily as [4]

I(z) = T(e M=ot + e¥=e ). (7)

Here e¥=isann X n diagonal matrix with [e¥s]; = ene, [e¥*]; =0
for 4,§ = 1,-++,n and 7 # j, and «* and «~ are n X 1 vectors of 2n
undetermined constants [et]; = ait, [e ], = ;. [t is clear from
(5) and (6) that the mode currents I,,(z) consist of n uncoupled

' waves with propagation constants v.i = 1,--+n. [f the complex

scalars v; are written as v; = 7. + jw/v;, then the astenuation con-
stants and velocities of propagation for each mode become »; and v;,

respectively. From the second equation of (1), V(z) = —¥f(z),
and (7) we obtain [4]
V(@) = YTy T T(eT2a* — V2a") ) )

where the square root of ¥? is denoted by y with “yJu = v¢ and
[¥Js = 0 for 4, = 1,--+,» and 4 s j. Multiplying (7) and (8)
by ef“t, we obtain the voltages and currents in the time domain
in terms of forward-traveling waves U*(x,t},9*(x,¢) and backward
traveling waves ‘U~ (z,l),9~ (x,t) as

V(z,t) = VF(xz,t) + V™ (1) (9a)
and

g(z,t) = 9% (x,t) — I (2,0). (9b)
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From (7 ) and (8) we may identify

I+(z,t) = Te~Yeateiot (10a)
9~ (x,t) = —Te¥=qeivt (10b)
VH(z,t) = Zod*(z,0) (10¢)
V- (2,8) = ZcI(x,t). (10d)

The characteristic impedance matrix Z¢ is logically defined from
(7}, (8), (9), and (10) as
Zg = YTy T = ZTy 1T (11)
and the identity ¥ 1Ty = ZT~vy1used in (11) may be easily verified
from (6). The square root of ¥Z may be defined as
VYZ = (TyT) (12)

which is easily verified by forming YZ = (\/YZ)(\YZ) =
(TyT ) (T+T1') = T+2Tt Thus (11) may be expressed, sym-
bolically, as

Ze =Y \YZ) = Z(\/YZ)!

which reduces to a familiar fesult for the two-conductor case
(n = 1) where ¥ and Z become complex scalars. The chain param-
eter matrix, ® (£), may be expressed in partitioned form as

@ (L) @p(L)
®(L) =
Dy (L) Pn(L)
where the submatrices @y (L), ®12(L), ®y (L), @ (L) are 7 X n

ahd are obtained by eliminating «* and «~ from (7) and (8) to
give [4]

(13)

(14)

(L) = 1/27-1T (¥ + & YE) -1y (158)
®(£) = —1/2Y 1Ty (VS — eYL) T (15b)
@D (L) = —1/2T (Y€ — YY) 1Ty (15¢)
®n(L) = 1/2T(e¥$ + ~Y8) T, (15d)

The matrix exponential may be defined as an absolutely convergent
matrix infinite series [37]. Therefore, we may form

£ £2 _ &P
VY8 = 1, 4 VYZ 5+ (VY2 5+ (VY2 5+ e (16a)
£ £2 3
em=1h+?1»—!+~rza+'raa+-“ (16b)
eV¥Z8 = Teteq (16c)

since \/YZ = T¢T' [3]. Thus matrix hyperbolic functions may
be defined as

cosh (\/YZ8) = 1/2(eV¥2E 4 ¢—V¥Zg)

Il

£2 £t
1, + (\/YZ)*E + (\/YZ)“Z + .

1/2T(e¥& + e T8) 71 (17a)

sinh (7/¥YZL) = 1/2(eVY2¢ — oV¥Zg)

I

= &3 ——
VYZE + (VY2 5+ (VYD) Gt

= 1/2T(eY$ — e~ T&) T1, (17b)
Therefore, using (17), (15) may be expressed symbolically as
®u (L) = ¥cosh (\/YZL)Y (18a)
@1(8) = —Y-1/YZsinh (1/VZE)
= —Z(\/YZ) " sinh (\/YZE)
= —Zpsinh (\/YZ£) (18b)
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@y (L) = —sinh (\/YZ28) (\/YZ)7'Y

= —sinh (\/YZ8)(\/YZ)Z!
= —sinh (V¥ZE) Zo (18¢)
®(8) = cosh (\/FZEL). (18d)

Although derived for multiconductor lines, these expressions reduce
to a familiar result for the two-conductor line. The order of matrix
multiplication is important since the matrix products do not gen-
erally commute. For numerical computation one would use the
expressions for the submatrices given in (15) since the equivalent
symbolic expressions in (18) would be of little value in machine
computation.

An equivalent development in terms of the matrix product ZY
and \/ZY can be obtained. The eigenvalues of YZ, v.2, ¢ = 1,+--,n,
are given by the n roots of [3]

det (v’1, — YZ) =0 (19)

where the determinant of an n X n matrix M is denoted by det (M).
The n X 1 columns of T,T, where T = [T4,Ty,--+,T.] are the
eigenvectors of ¥Z and are the solutions to [3]

(v#1p — YZ)T, = ,0:. (20)

The eigenvalues of ZY can be shown to be the same as the eigen-
values of ¥Z.! This can be shown easily, when ¥ or Z are nonsingular,
by forming det (y21, — ¥YZ) = det (¥Y{y%l;, — ZY}¥Y"! = det (Z.
{v21, — ZY}Z). The determinant of a product of square matrices is
equal to the product of their determinants in any order. Thus we
may write this as det (v21; — YZ) = det (¥) det (¥1) det (y21, —
ZY) = det (Z71) det (Z) det (v21, — ZY) = det (y?1, — ZY) since
det (¥) det (Y1) = det (Z7) det (Z) = 1. Also one can form (20)
as Y(v.21, — ZY) (Y1T,) = ,0;s0 thatif ¥ is nonsingular, then each
of the eigenvectors of ZY is equal to the product of ¥~! and each
of the eigenvectors of ¥Z (within a scalar constant). Similarly, (20)
can be formed as Z71(v?1, — ZY)(ZT,) = .0, so that if Z is non-
singular, then each of the eigenvectors of ZY is equal to the product
of Z and each of the eigenvectors of ¥Z (within a scalar constant).
These facts can be used to form the above relations in terms of the
matrix product Z¥. The order of matrix multiplication is important
and \/YZ # /ZY in general. In fact, one can show that

VZY = YUY Y (21)
by forming \/Z¥\/ZY = (Y71\/YZY) (Y"'\/YZY) = ZY. Thus

the characteristic impedance matrix in terms of +/ZY can be
expressed symbolically from (13) and (21) as

o Zo= (VZDY! = (\ZV)Z.

Additionally, the state transition matrix can be formed as an
absolutely convergent matrix infinite series [3]

(22)

82 £3
®(8) = eME = L+ ML+ M A M (282)

non -
M = .
—~Y .0,

After obtaining the indicated products in (23) one can identify
using (14)

where from (1)

(23b)

£2 £
@ (L) =1n+ZYa+(ZY)2Z"‘+"' (24a)
£ £
®p(L) = —ZL — ZYZ3—' — (ZY)ZZE; — ses (24b)
£ £
Dy (L) = —Y£—YZY5— (YZ)zYE— sen (24c¢)

1 See [3, pp. 101-102].
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£2 £4
@ (L) =1, + YZE -+ (YZ)24—, + - (24d)

Matrix hyperbolic functions may logically be defined as absolutely

convergent infinite series as in (17) and thus (24) may now be
expressed as

®1: (£) = cosh (A/ZY8)
£ £t
— -1 —_— 2 cen
=Yy {1n+yz2!+(y’2) ot }Y
= Y lcosh (/YZL)Y (25a)

D12(L) = —Z(\/ﬁ)-l{\/y—zx + (\/’y_z)sfg

+ (,\/ﬁ)ag + ...}

= —Z(+/YZ)"'sinh (A/YZE) (25b)

or -

Dp(L) = — {‘\/ZYeB + («/ ZY)gg

+ (\/2?)55'2-2 + } VZyYy
= —ginh (\/ZY8£)\/Z¥YY! (25¢)

Dy (L) = —Y(\/Z?rl{\/zyue + (\/Z_Y)si—:

+<\/ﬁ)5§+---}

= —Y(+A/Z¥)'sinh (\/Z7E£) (25d)

or

@y (L) = — {\/ﬁ,@ + ('\/ﬁ)ge—;‘

+ (VTDE + } (VTZ)Y

= —sinh (v/YZ£) (\/TZ)'Y
@3, (L) = cosh (\/YZL)

(25¢e)

£ ot
- — 2 sen —1
= ¥l + Z¥ o+ (20 + Y

= Ycosh (\/Z7£)Y % (25f)

Recalling the characteristic impedance Z¢ from (13) and (22), we

may express (25) as
®;(£) = Ylcosh (\/YZL)Y = cosh (/ZYEL) (26a)
®12(8) = —Zosinh (VYZL) = —sinh (VZ¥E€) Ze (26b)
@5 (L) = —sinh (V/PZL)Zs! = —Zsisinh (\/ZVL) (26¢)
@2 (L) = cosh (\/YZL) = Ycosh (\/ZYL)Y™? (26d)

which of course reduces to a familiar result for the two-conductor
case.

III. MATRIX CHAIN PARAMETER IDENTITIES

The purpose of this section is to show some fundamental identities
involving the submatrices of the chain parameter matrix ®u, ®u,
@,1, and ®». The fundamental identities are '

(27a)
(27b)

Identity 1: ®p®pdidy — PpdPu = 1,

Identity 2: ®u®u®u1®Pn — O@uPr2 = 1,

759

Identity 3: D1 Pu®1! = Oy (27¢)
Identity 4: @214);1(1)21-1 = by (27d)
Identity 5: Dy = Dyt (27e)

where the transpose of a matrix M is denoted by M.

Identity 1 and Identity 2 for the two-conductor case reduce to
the familar result: ®u®Pw — $1Pu = 1, ie, the ceterminant of
the chain parameter matrix is equal to one, since for n = 1, the
submatrices become scalars. Similarly, Identities 3,4,5 reduce to
a familar result for the two-conductor case, i.e., ®1; = $. Identities
1,2,3,4 can be readily verified by substituting the form of the
submatrices given in (15) and utilizing the fact that e¥£, e=¥£ and
v are diagonal matrices so that the order of multipliation of these
matrices may be interchanged. Identity 5 is easily shown from (24a)
and (24d) since the transpose of the sum of any nurober of matrices
is equal to the sum of their transposes and Z and Y are symmetric,
ie., Z=2tand ¥ = Y.

In addition, both @y and ®y are symmetric matrices since Z
and ¥ are symmetric which can be obviously demonstrated from
(24b) and (24¢). Also, the following matrix products can be shown
to be symmetric: Py, Bodsr, ®19®0, PuPy which can be easily
demonstrated from (24). Also from (24b) and (24c¢) it follows that
Y ‘1)12 = <I>2ll.

The proofs of Identities 1,2,3,4 relied upon the direct substitu-
tion of the forms of the chain parameter submatrices in (15) which
assumed that YZ is diagonalizable by the similarity ‘ransformation
T as in (6). The general development for the chain parameter
matrix without the assumption of the diagonalizability of YZ is
given in [4] in terms of the Jordan canonical form. It is possible
to directly show these identities in general regardless of whether or
not ¥YZ is diagonalizable by a similarity transformation.

Identities 1,2,3,4 can be directly shown by utilizing the ioportant
fact [3]

O7(L) = ®(—L) (28a.)

or

@) ®(—L) = Loy (28b)

This relationship for the inverse of the state transition or 'chain
parameter matrix follows from (3) and holds, in general, for any
system of first-order ordinary differential equations and does not
depend on the structure of M in (23b) [37]. Forming this relation

gives
|:.q>u(£) (L) [ou(—ee) ?xz(—m:l |:],-n nonjl
= (29)
0 (£) ®u(8) || ou(=2) ®u(—2) 0, 1,
which yields the identities
@ (L) Pu(—L) + Pu(L)Bu(—L) =1, (30a)
D3 (L) B (~8) + @ (L) We(—L) =1, (30b)
D1 (L) Pr2(— L) + Biz(L) P (—L) = 0, (30¢)
Oy (L)Y (—L) + ?22(3)@21(—-—43) = ,0,. (30d)

By utilizing the specific structure of the coefficient matrix in (1)
and the resulting series expansion of the state transition matrix
in (24), it is clear that :

Du(—8) = eu(L) (8la)
On(—L) = (L) (31b)
B (—8) = —@(L) (31¢)
®n(—L) = —oun(8L). (31d)
Substituting the relations in (31) into (30), we obtain
@1 (L) Pu (L) — Pr(L)Pu(L) = 1a (32a)
Bn(L) B (L) — Pu(L)Pn(L) =1, (32b)



760

— @y (L) @12 (L) + P12(L) @2 (L) = 20n (32¢)

@2 (L) P11 (L) — P(L) B (L) = 0n. (32d)

If ®12(£) and @2 (£) are nonsingular, then (32¢) becomes Identity 3
and (32d) becomes Identity 4. Substituting these two identities
into (32a) and (32b) we obtain Identity 1 and Identity 2, respec-
tively. Note that Identities 1,2,3,4 do not rely on Z and ¥ being
symmetric.

IV. INCORPORATING THE TERMINATION NETWORKS

The desired end result in an analysis of transmission line behavior
is a determination of the voltages and currents along the line when
the line is driven by linear termination networks at the ends of the
line. For these purposes, we choose to characterize these linear
terininatiop networks by ‘‘generalized Thevenin equivalents’” as

V(0) = Ey — ZJ(0) (33a)
V() = Eg + ZeI(8) (33b)

where E, and Eg are n X 1 complex vectors of equivalent open
circuit port excitation voltages (with respect to the reference con-
ductor) and Z, and Zg are n X n complex symmetric impedance
matri¢es. The matrix chain parameters relate the voltages and
currents at the ends of the line as

V(L) = ®u(L)V(0) + ®:(L)I(0)
I(£) = Py (L) V(0) + ®n(L)I(0).

(34a)
(34b)

The objective now is to eliminate V(0) and V(&) from (33)
and (34) to yield a set of 2n equations in the 2n unknowns 7(0)
and I(£). Substituting (33a) into (34b) and rearranging yields the
first equation ‘ -

I(£) + (@2120 - ‘Dzz)l(o) = ll.)zlEo. (35)

The remaining equation can be obtained by substituting (33b)
into (34a) to yield

Ep + ZpI(£) = @uV(0) + @1I(0). (36)
Substituting from (34b)
V(O) = @21—11(53) — @21_1111221(0) (37)

into (36), rearranging and multiplying on the left by @z yields
(—®uZg + PuduPu™)I(L) + (PuP2 — PuDu®Pn'®n)I(0)

. = '1)21E£. (38)

Using Identity 2 and Identity 4in (38) yields

(®uZg — ®2)1(L) + 1(0) = —®uEg. (39)

Equations (35) and (39) can be arranged in matrix form as

(®nZy — ®n) 1, I1(0) Py Ep
= : (40}
1. (®nZo — ®w)_|| I(L) —@y Ep

which has a highly‘sparrse coefficient matrix with 2(n? — n) of the
total 4n? elements identically zero. Equation (40) can also be
solved explicitly for I(0) and I(£) as

{1, — (®aZp — @) (®uZ; — ®y) }1(0)
= —PyEs — ('1)2124? — ®p)®uE, (41a)
I(8) = — (®uZy — ®n)I(0) + @5 Eo (41b)

V(z) and I(z) at any point along the line can be found from (3)
once I(0) is obtained from the solution of (40) or (41a) and V(0)
is obtained from (33a). S
The identities have reduced the number of redundant matrix
multiplications and, moreover, only two of the four matrix chain
parameter submatrices are required to be computed; ®x and ®z
[see (15)]. Reducing the number of required matrix multiplications
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is an important consideration in numerical machine computation.
For example, n3 operations (multiplications or divisions) are required
to multiply two “full’”’ » X n matrices which is the minimum number
of operations required to invert a “full” n X n matrix [6]. The
solution of a set of n equations in n unknowns by Gauss elimination
requires n3/3 + n? — n/3 operations or n3/3 for large n [6 . Forming
@42, and ®yZg require 2n3 operations. Therefore, solution of (40)
requires on the order of (2n)%/3 + 2n® = 14n%/3 total operations
(neglecting the n? operations required to form ®xE, and @ Eg).
Solution of (41a) requires an additional n? operations for the multi-
plication of (®nZg — ®n) (®PuZ, — ®xu) and n® operations for the
multiplication of (®uZg — ®un)®n. Thus the total number of
operations required to solve (41) is on the order of n?/3 + 4n® =
13n%/3 operations. Therefore, it may be more efficient to solve (40)
rather than (41) since almost the same number of operations are
involved and the sparsity of (40) can be used to reduce the required
number of operations even further.

V. SUMMARY

Certain matrix identities among the submatrices of the chain
parameter matrix for multiconductor transmission lines have been
shown. The identities reduce to familiar results for the two-conductor
transmission line where the submatrices become complex scalars.
The order of multiplication of the submatrices must be carefully
adhered to for the multiconductor case since the various matrix
products do not in general commute. A set of matrix equations
which incorporate the termination networks for the' total solution
of the line currents was formulated. Using the matrix identities the
coefficient matrix was reduced to a highly sparse and efficient form.
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Green'’s Function in a Region with Inhomogeneous,
Isotropic Dielectric Media

MASANORI KOBAYASHI

Abstract—The reciprocity relation satisfied by the Green’s func-
tion for the inhomogeneous partial differential equation in a multi-
dielectric region with inhomogeneous, isotropic media is derived
by using Green’s theorem.

I. INTRODUCTION

The calculation of the parameters of a microstrip line based on a
TEM approximation is useful for the design of microwave integrated
circuit structures. The parameters often can be calculated by varia-
tional techniques using Green’s functions [17]-[5]; however, the
Green’s function satisfying the boundary conditions must be ob-
tained first.
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