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Fig. 3. Two-dielectric transmission line considered in the example of

Section VII.

TABLE I

~ = 2 bl = 0.241840E02b 3=().736682E02 fJS=O.964940E05

j (GHz) 8 (m-’) RI (m-’) R, (m-’) R, (m-’)

0.5 12.093 0.001 0.000 0.000
24,191 0.007 0.000 0.000

; 48.427 0.059 0.000
3

0.000
72.753 0.201 0.002 0.000

4 97.217 0.481
5 121.870 0.950
6 146.766 1.662
7 171,963 2.676
8 197.523 4.051

22.3.504 5.848
1: 249.963 8.124

0.010 0.000
0.029 –0.001
0.071 –0.004
0.149 –0.013
0.279 –0.037
0.478 –0.092
0.757 –0.208
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Fig. 4. Power series approximations to the phase constant of the line

represented in Fig. 3.

quency; thk is a TM mode with components H= = H, Ev, and En.

A standard procedure enables us to obtain the dispersion equation:

~(l)
tan (k%) = ~(,) tan ~k@j(d – al

~(1) 42)

where superscript (1) refers to the dielectric layer O < y < a and

superscript (2) to the dielectric layer a < y < d and for each layer

k~ = U%PO – ,8’.

Next the first three coefficients of the expansion for & that is

b,, b~, and bs, were calculated, the last one with the sole purpose of

assessing the speed of convergence.

The coefficients were obtained by the method developed in Sec-

tions V and VI, using the zero-order coefficient Ho e..sthe scale con-

stant and imposing a frequency-independent current in the con-

ductor y = O.

The numerical computation was carried out for two cases corre-

sponding to the following parameters:

d=lcm

a = 0.5 cm

@ = vacuum permittivity

The normalization frequency fO = ao/27r was taken to be 1 GHz.

For @/# = 2 the results are given in Table I; examination of

this table shows that the error RE is less than 1/1000 of B within the

frequency range considered.

For #)/#) = 20 the results are shown in Fig. 4; it is seen that the

accuracy of the approximation degrades very quickly from the point

where RE changes from positive to negative.

VIII. CONCLUSIONS

In the preceding sections it has been shown that for a transmission
line with two conductors and a dielectric medium consisting of various
homogeneous regions it is possible to expand all field functions as a

power series of the frequency.
The main interest of this expansion appears to be the possibility

of estimating an upper limit to the frequency band in which the dk-

persion does not exceed a specified value.

In this short paper the analysis has been confined to general as-

pects of the proposed expansion. The problem of computing the

higher order terms for transmission lines of practical interest has not

been considered.

ACKNOWLEDGMENT

The authors wish to thank Prof. J. Brown of Imperial College for

giving the initial idea of expanding the fields as a power series of ~

and for making useful comments on the manuscript.

REFERENCES

[1] D. G. Corr and J. B. Davies, “Computer analysis of the fundamental

and higher order modes in single and coupled microstrip, ” IEEE

Trans. Microwave Theoru Tech., vol. MT T-20, PP. 669–678, Oct.
1972.

Useful Matrix Chain Parameter Identities for the

Analysis of Multiconductor Transmission Lines

CLAYTON R. PAUL, MEMBER, IEEE

Abstract—By utilizing state variable theory, certain useful matrix

identities involving submatrices of the chain parameter matrix for
a multiconductor transmission line are shown. These ide~tities are
extensions of familiar properties associated with two-conductor
lines to multiconductor lines and are used to formulate the complete

solution for the terminal currents when the line is terminated by
linear networks. The identities allow a simplified solution for these

currents and reduce numerous redundant time-consuming matrix
multiplications. In addition, the correspondence between f smiliar
terms for the two-conductor case and the multiconductor case is
shown.

I. INTRODUCTION

The subject of coupled transmission lines arises in the study of

many microwave related structures. Transmission lines in a homo-

geneous medium occur in the study of strip lines whereas applica-
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tions involving transmission lines in an inhomogeneous medium

occur in the studv of microstri~ lines. For transmission lines in

a homogeneous medium, the principal mode of propagation is the

TEM mode whereas for an inhomogeneous medium, the-predominant

mode of propagation is taken to be the “quasi-TEM” mode. For

either mode of propagation, the per unit length distributed param-
eters in the transmission line representation are computed by

assuming that the electric and magnetic field intensity vectors are

transverse to the dkection of propagation. Therefore, at each pdint

along the line, these vectors satisfy static dktributions [1].

The matrix chain parameter (or ABCD parameter) representation

of the transmission line is often used in characterizing the line for

the TEM (or “quasi-TEM” ) mode of propagation as a multiport

network. The purpose of thk short paper is to extend certain well-

known identities involving elements of the chain parameter matrix

for the two-conductor line to the multiconductor case. In addition,

a convenient matrik formulation is shown which allows an efficient

numerical solution for the terminal currents when multiport networks

are connected by the line.

An (n + 1) conductor, uniform transmission line is considered

with the (n + 1) st conductor (usually an infinite ground plane or

overall shield) designated as the reference conductof. The dielectric

medium surroundimz the conductors is assumed to be linear and

isotropic but may be inhomogeneous. The line is considered to be

uniform in that all (n + 1) conductors have uniform cross sections

along their lengths, are parallel to each other and the x direction,

and, in the case of an inhomogeneous medium, the characteristics

of the medium exhibit no cross-sectional variskion with x and are

therefore independent of z. The line is of total length &. For sinusoidal

excitation, the voltage of the ith conductor with respect to the

reference conductor is denoted by V1 (z,t) = V,(z) e~~~and the cur-

rent associated with the ith conductor and directed in the positive

x dh-ection is denoted by g, (xjt) = 1,(z) e~**. V, (z) and ~;(z) are

complex valued and functions of x only with i = 1, . . . ,n. The

transmission line is described for the TEM (or “quasi-TEM” )

mode of propagation and the sinusoidal steady state by the following

set of 2n-coupled first-order complex ordinary differential equa-

tions [1]:

[2)1=[::1[:::1 (1)

A matrix M with m rows and p columns is of order m X p. The

element in the ith row and jth column of M is designated by [M]iJ

with i = 1,. . .,m and j = 1,. . .,p. The n X 1 complex-valued

vectors V(x) and Z(z) have entries [V(z) ], = V.(z) and [Z(z)], =

Ii(z) in the ith rows, and the first derivative of a vector V(z) with

respect to x is denoted by V(Z). An m X p zero matrix with zeros

in every position is denoted by ~Op, i.e., [~Oz],~ = O for i = 1,”” “ ,m

andj = 1,. ..,p.

The n X n complex symmetric matrices Z and Y are the per unit

length impedance and admittance matrices, respectively. These

matrices are independent of z, since the line is assumed to be uniform,

and are separable as

Z = R, + jc& + jcJ (2a)

Y= G+j. C (2b)

where the n X n real matrices R., L,, L, G, C are the per unit length

conductor resistance, conductor internal inductance, external in-

ductance, conductance, and capacitance matrices, respectively [1].

R. and L. are symmetric and result from imperfect conductors so

that for (n + 1) perfect conductors, R. = nOm and L. = nOn [1].

For (n + 1) perfect conductors, G, L, and C are computed by

assuming that the electric and ,magnetic field intensity vectors lie

in planes perpendicular to z arid at each frequency satisfy static

distributions at each z along the line [1]. In addition, it can be

shown that G, L, and C are symmetric for a homogeneous medium

or an inhomogeneous medium [2] and for a lossless medium G =

.0.. G and C are of the form [G];i = Z ,~1 g,i, [Gl;j = ‘9m

[Cl;, = ~ ~~, c,,, [Cl, = –ci, where gi,,cii and gi,,cii are the per

unit length conductance and capacitances between the ith con-

ductor and the reference conductor and between thk ith conductor

and the jth” conductor, respectively with i,j = 1, ~~.. ;rz [2]. For

transmission lines consisting of ‘(n + 1) perfect conductors in

a homogeneous medium characterized by the scalar permittivity e,

permeability ri, and conductivity u, it may be shown that L C =

~dn and GL = q.dn where 1. is. the n X n identity matrix with

ones on the main diagonal and zeros elsewhere [5].

II. THE MATRIX CHAIN PARAMETERS

Since (1) is a set of first-order ordinary constant-coefficient

differential equations in state variable form, the solution is well
known [3] and is given by

[H=o(’-z”)[n:l‘3)
where the 2n X 2n complex matrix @(z — zo) is the state, transi-

tion matrix or chain parameter matrix and z, is some arbitrary fixed
point along the line with x > xO. In addition, the rtate transition

matrix @(z — ZO) has the property @(0) = 12* where lz~ is the

?n X 2n identity matrix with [12.1,, = 1 and [lM1,, = O for i,j =
1, . . . ,2n and i # j [3]. Without loss of generality we may take

x = ~ and zo = O in (3) resulting in the overall chain parameter

matrix of the line ~(~). Additionally, it can be shown that the

inverse of the state transition matrix or chain parameter matrix is

given by 0-1 (z – xO) = CD(W – z) where the inverse of a matrix

M is denoted by M-’ [3]. Thereforej QT’ (s) = @( –$3).

The chain parameter matrix for uniform lines can be obtained

easily since Z and Yin (1) are independent of z. Differentiating the

second equation of (i) with respect to x, Z(z) = — Y~(z), and

su&tituiing the first equation of (1) results in

z(z) = Yzz(z) . (4)

One may define a change of variables as Z(z) = T,L (z) where T

is an n X n nonsingular complex matrix and Z~ (z ) is an n X 1

vector of “mode currents.” Substituting this in (4) ~’ields

Zm(z) = !r-’YzTzm (z). (5)

If a similarity transformation 2“ can be found whi~h diagonafizes

the matrix product YZ as

where Y2 is an n X n diagonal matrix with [ Yz]i; = -y,’! and [ y2]i~ = O

for i,j = 1, . . . in and i # j, then (5) becomes a set of n uncoupled

equations and the solution to (4) can be obtained easily as [4]

l(z) = T(e–yc a+ + eye W-). (7)

Here ey” is an n X n diagonal matrix with [e~$]it = tT@, [ey”]ij = O

for i,j = 1,.. .,n and i #j, and a+ and ~- are n X 1 vectors of 2n

undetermined constants [a+]{ = CW+, [u-], = at–. ;:t is clear from

(5) and (6) that the mode currents Z~ (z) consist of p uncoupled

waves with propagation constants yt,i = 1, 0.. ,n. l:f the complex

scalars ~i are written as yi = q, + j~/V{, then the a ~tenuation con-

stants and velocities of propagation for each rrwde become m and v;,

respectively. From the second equation of (1), V(z) = – Y-l~(z),

and (7) we obtain ~4]

V(z) = Y-lTyT-l{ T(e-y*a+ – e~za-) ] (8)

where the square root ~f Y2is denoted by y with 1Y];; = ~i and

[71,, = O for i,j = 1,. ~.,n and i #j. Multiplying (7) and (8)

by e@, we obtain the voltages and currents in the time domain

in terms of forward-traveling waves 1)+ (zjt) ,~+ (z,t) and backward

traveling waves 1)- (zlt) ,9- (z,t) as

%)((c,t) = W+(z,t) + w- (Z,t) (9a)

and

a (Z,t) = a+(z,t) – a- (Z,t) . (9b)
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From (7) and (8) we may identify

fj+(~,~) = ~e–Y.a+eiw~ (lOa)

$–(x,t) = –Tey”a–e@ (lOb)

$U+(z)t) = zc9+(x,t) (1OC)

IY(z,t) = z&(z,t). (lOd)

The characteristic impedance matrix Zcislogically defined from

(7), (8), (9), and (10) as

Zc = Y–lz’y T-1 = Zz’y-lz’-l (11)

and the identity Y–lT~ = ZTT–l usedin (11) may be easily verified

from (6). Thesquare root of YZmaybe defined as

@z=’ (TTT-’) (12)

which is easily verified by forming YZ = ( -z) ( -z) =

( TYT-’) ( TYT-l) = Z’Y’T-’. Thus (11) may be expressed, sym-

bolically, as

Zc = Y-1(@) = 2( @z)-l (13)

wtich reduces to a familiar result for the two-conductor case

(n = 1) where Y and Z become complex scalars. The chain param-

eter matrix, @($ ), may be expressed in partitioned form as

‘(’)= [:: :::1 ’14)
where the submatrices %(~),%(S), % (=8),%(Q) are n X n

and are obtained by eliminating W+ and a– from (7) and (8) to

give [4]

@U (Q) = l/2Y-l T (ey~ + e–y~) T-lY (15a)

@lZ(k) = –1/2Y–l Ty(ey$ – e–y$) T–l (15b)

@jI(&) = —1/2T(eyS — e-y~)y–17–lY (15C)

@z2(&) = l/2 T(ey~ +e–Y~)T–l. (15dj

The matrix exponential may be defined as an absolutely convergent

matrix infinite series [3]. Therefore, we may form

e-s =1. + @Z~+(@Z)2~+(@2)3~+... (16a)

(16b)

e-J3 = TeT&T–1 (16c)

since -Z = Ty T–l [3]. Thus matrix hyperbolic functioris may

be defined as

cosh ( ~Z.&) =

&

.

sinh ( @ZQ) =

.

.

1/2 (en~ + e--~)

1.+ (@z)z:+ (@z)43 +...

i/2 T (e~~ + e–yQ ) T-l

1/2 (ens – e-~~)

EZs + (m’:+ (<=)6;+ .

l/2T (ey~ – e-yk) T-l.

Therefore, using (17), (15) may be expressed symbolically as

% (43) = Y-’ cosh ( ~Zd3) Y

% (S) = – Y-l @Z sinh ( ~FZJ3)

—— – 2( @Z)’1 sinh ( @Z$3)

= –Zcsinh (@Z&?)

(17a)

.

(17b)

(18a)

(18b)

@,,(Q) = –sinh ( ~z2) ( ~Z)-lY

. –sinh ( ~Z&) ( -Z) Z–l

—— — sinh ( ~>~ ) ZC–l (18c)

0,, (S) = cosh ( @Z&). (18d)

Although derived for multiconductor lines, these expressions reduce

to a familiar result for the two-conductor line. The order of matrix

multiplication is important since the matrix products do not gen-

erally commute. For numerical computation one would use the

expressions for the submatrices given in (15) since the equivalent

symbolic expressions in (18) would be of little value in machine

computation.

An equivalent development in terms of the matrix product ZY

and ~~ can be obtained. The eigenvalues of YZ, -y,z, i = 1, . . . ,n,

are given by the n roots of [3]

det (-y’l. – YZ) = O (19)

where the determinant of an n X n matrix M is denoted by det (~).

The n X 1 columns of T, T, where T = [71, T2,. ... T.] are the

eigenvectors of YZ and are the solutions to [3]

(-yt’in – Yz) T. = .0,. (20)

The eigenvalues of ZY can be shown to be the same as the eigen-

values of YZ.I This can be shown easily, when Y or Z are nonsingular,

by forming det (721. – YZ) = det ( Y{ Y21fi – ZY} Y-l = det (Z-l.

{V2L – ZY} Z). The determinant of a product of square matrices is

equal to the product of their determinants in any order. Thus we

may write this as det (-Y21A — YZ) = det (Y) det ( Y–] ) det (721n —

ZY) = det (2-1) det (Z) det (-yzlm – ZY) = det (~zln – ZY) eince

det (Y) det (Y-’) = det (Z-’) det (Z) = 1. Also one can form (20)

as Y(y,% — ZY) ( Y–l T,) = ~01 so that if Y is nonsingular, then each

of the eigenvectors of ZY is equal to the product of Y–l and each

of the eigenvectors of YZ (within a scalar constant). Similarly, (20)

can be formed as Z–l (-yzl. — ZY) (ZT,) = fiOl so that if Z is non-

singular, then each of the eigenvectors of ZY is equal to the product

of Z and each of the eigenvectors of YZ (within a scalar constant).

These facts can be used to form the above relations in terms of the

matrix product ZY. The order of matrix multiplication is important

and -Z # ~Y in general. In fact, one can show that

%%’ = Y-’(@z)Y (21]

by forming &Y~Y = (Y-’ ~ZY) (Y-’ ~ZY) = ZY. Thus

the characteristic impedance matrix in terms of ~~Y can be

expressed symbolically from (13 ) and (21) as

z~ = ( WY) Y-’ = ( WY) -’z. (22)

Additionally, the state transition matrix can be formed as an

absolutely convergent matrix infinite series [3]

where from (1)

[1
o. . –z

M= (23b)
–Y .0. “

After obtaining the indicated products in (23) one can identify

using (14)

%l(s) = ln+zY; + (WY)’:+ ... (24a)

%(s) = –2s – ZYZ: – (ZY)2Z; – . . . (24b)

%(S’) = –Ys – YZY; – (Yz)2Yg – . . . (24c)

1 See [3, pp. 101–102],
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a%(s) = 1.+ YZ; + (YZ)2$+ . . . . (24d)

Matrix hyperbolic functions may logically be defined as absolutely

convergent infinite series as in (17) and thus (24) may now be

expressed as

%(S) = cosh (~Y&)

[ }
=Y-1 l.+ YZ:+(YZ)$+. O.Y

= Y-’ cosh ( @ZJ3) Y

{

%(s) = –Z(<FZ)-1 @zs + (@z)’;

+ (Wrz)’:+ ““” 1
. –2( -Z)-l sinh (@Z&)

or

{
m,(s) = – @Ys + (WY)’:

1+(WY)’:+ ““” WY1’-’

– —sinh ( @Y13) ~ZYY–l—

{
@21(J3) = –Y(<ZY)-1 1..mYJ3 + ( <zY)’ ;

+ (WY)’:+””” 1
= – Y( @Y)-l sinh ( ~ZY&)

or

+ (mZ)’:+ ““”

}

( WTZ)-’Y

—— —sinh ( <yZ&) ( v’~Z) ‘lY

o,,(s) = cosh ( <=J3)

{
=Y ln+zY:+(zY) $+...

}
y-1

—— Y cosh ( <~Y&) Y-’.

(25a)

(25b)

(25c)

(25d)

(25e)

(25f)

Recalling the characteristic impedance ZC from (13) and (22), we

may express (25) as

o,, (s) = Y-l cosh ( ~YZJ3) Y = cosh ( v’~YS) (26a)

@,2 (S) = –ZC sinh ( #ZS) = –sinh ( x/~YS) ZC (26b)

*Z, (s) = –sinh ( &ZS) ZC-l = – ZC-’ sinh ( WYd3) (Z6C)

% (S) = COSh ( @ZS) = Y cosh ( &Yi3) Y-l (26d)

which of course reduces to a familiar result for the two-conductor

case.

III. MATRIX CHAIN PARAMETER IDENTITIES

The purpose of this section is to show some fundamental identities

involving the submatrices of the chain parameter matrix % @12,

*21, and ck. The fundamental identities are

Identity 1: awonmz-wn — am% = 1. (27a)

Identity 2: *214 D11*21-W22 — m21m2 = L (27b)

Identity 3: aq’zmzqqz–l = % (27c)

Identity 4: @21@ll@21–1 = 022 (27d)

Identity 5: *II = @# (27e)

where the transpose of a matrix M is denoted by M“.

Identity 1‘ and Identity 2 for the two-conductor case reduce to

the familar result: @,,@,, – @@M = 1, i.e., the determinant of

the chain parameter matrix is equal to one, since for n = 1, the

submatrices become scalars. Similarly, Identities 3,4,5 reduce to

a familar result for the two-conductor case, i.e., % = %2. Identities

1,2,3,4 can be readily verified by substituting the form of the

submatrices given in (15) and utilizing the fact that e~~, e–y~, and

y are diagonal matrices so that the order of multiplication of these

matrices may be interchanged. Identity 5 is easily sho m from (24a)

and (24d) since the transpose of the sum of any number of matrices

is equal to the sum of their transposes and Z and Y are symmetric,

i.e., Z = Zf and Y = Yt.

In addition, both % and % are symmetric matrices since Z

and Y are symmetric which can be obviously demonstrated from

(24b) and (24c). Also, the following matrix products can be shown

to be symmetric: @,,@I,, ~,,%,,%*,,, %1% which can be easily

demonstrated from (24). Also from (24b) and (24c) it follows that

Y% = %2.

The proofs of Identities 1,2,3,4 relied upon the direct substitu-

tion of the forms of the chain parameter submatrices in (15) which

assumed that YZ is diagonalizable by the similarity transformation

T as in (6). The general development for the chain parameter

matrix without the assumption of the diagonalizability of YZ is

given in [4] in terms of the Jordan canonical form It is possible

to dkectly show these identities in general regardless of whether or

not YZ is diagonalizable by a similarity transformation.

Identities 1,2,3,4 can be dhectly shown by utilizing the important

fact [3]

0-’($) = 0(–s) (28a)

or

0(s)0(–s) = 12n. (28b)

Thk relationship for the inverse of the state transition or ‘chain

parameter matrix follows from (3) and holds, in general, for any

system of first-order ordinary cliff erential equations and does not

depend on the structime of M in (23b) [3]. Forming this rel@ion

gives

r($)“z(&)-l[@’’(-s)‘-1=[::“::1‘2’)021(s) a%(s)- 021(–s) a%(-–f’)

which yields the identities

On(s) aql(-s) + @12( Li)@21(-cf3) = L (30a)

%2(s) %2(-s) + @21($ )@12(–ac) = L (30b)

ql(Q)@12(-J3) + m2(.&)a%2(–s) = no,, (30C)

%(s)%( —Q) + %(s)%(-s) = no,,. (30d)

By utilizing the specific structure of the coefficient matrix in (1)

and the resulting series expansion of the state transition matrix

in (24), it is clear that

%(-s) = %(’s) (31a)

022(–s) = 022(s) (31b)

*,2(–S) = –01,(s) (31C)

9ED21(-S) = –%1(s). (31d)

Substituting the relations in (31) into (30), we obtain

@11(d3)@11(+) – @12(s) @21(J3) = 1. (32?)

@22(s) @22(&) – @21(J3)m2(i3) = L (32b)
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—%(S) *12(J3) + @12(t’)@22(&’) = non (32c)

%($3)%(s) — a922(J3)@21(s) = .0.. (32d)

If am (.Q) and%(s) are nonsingnlar, then (32c) becomes Identity 3

and (32d), becomes Identity 4. Substituting these two identities

into (32a) and (32b) we obtain Identity 1 and Identity 2, respec-

tively. Note that Identities 1,2,3,4 do not rely on Z and Y“being

symmetric.

IV. INCORPORATING THE TERMINATION NETWORKS

The desired end result in an analyeis of transmission line behavior

is a determination of the voltages and currents along the line when

theline isdriven bylinear termination networks atthe ends of the

line. .For these purposes, we choose to characterize these linear

termination networks by “generalized Thevenin equivalents” as

v(o) = Eo–zoz(o) (33a)

v(s) =E&+z~I(s) (33b)

where EO and ES are n X 1 complex vectors of equivalent open

circuit port excitation voltages (with respect to the reference con-

ductor) and ZO and 2$ are n Xn complex symmetric impedance

matrices. The matrix chain parameters relate the voltages and

curtents at the ends of the line as

v(s) =%(J3)V(0) +@lz(eE)z(o) (34a)

1(s) =m2, (J3)v(o) +%2(s) 1(0). (34b)

The objective now is to eliminate V(O) and Y(s) from (33)

and (34) to yield, a set of 2n equations in the 2n unknowns 2(0)

and Z(Q). Substituting (33ri) into (34b) and rearranging yields the

Iirst equation

1(s) + (@21zo– 4D22)I(0) = *21E0. (35)

The remaining equation can be obtained by substituting (33b)

into (34a) to yield’

E&+ z&z(s) =@,,V(o) +m,z(o).

Substituting from (34b)

v(o) = @2,-v(i3) – @21-m%2z(o)

into (36), rearranging andmultiplying onthe left by

(36)

(37)

*ZI yields

=@,,E&. (38)

Using Identity 2and Identity4in (38) yields

(’%,2$ –%)1(s) +1(0) = –@21EJ3. (39)

Equations (35) and (39) can rearranged inmatrix form as

[

(%20 – %2)

L ‘“ lEl=[-:J( 40)(tD,,z&- al,,)

which has a highly sparse coefficient matrix with 2(nl — n) of the

total 4n2 elements identically zero. Equation (40) can also be

solved explicitly for Z(0) and I(d3) as

{l. – (a%zJ3–a %2)(@ 2,zo–a Jd)z(o)

= —%EQ — (@J21zJ3 — @22)!m21E0 (41a)

z(s) = –(*212, – fD22)z(o) +921E0. (41b)

V(z) and Z(z) atanypoint along theline can be found from (3)

once Z(0) isobtained from the solution of (40) or (41a) and J-’(O)

is obtained from, (33a).

The identities have reduced the number of redundant matrix

multiplications and, moreover, only two of the four matrix chain

parameter submatrices are required to be computed; % and %

[see (15)]. Reducing thenumbei ofrequired matrix multiplications

is an important consideration in numerical machine computation.

For example, n’ operations (multiplications or divisions) are required

tomultiply two’’full”n Xnmatrices which isthe minimum number

of operations required to invert a “full” n X n matrix [6]. The

solution of a set of n equations inn unknowns by Gauss elimination

reqtiiresn3/3 +n2 — n/30perations orn3/3forlargen [6]. Forming

@z,Z,and@,,Z& require 2n`operations. Therefore, so1utionof (40)

requires on the order of (2r3)2/3 +2n3 = 14n~/3 total operations

(neglecting then20perations required to form %, EO and %Es).

Solution of (41a) requires anadditional n’operations forthe multi-

plication of (%2$ – %)(021Z0 – %2) andn’ operations for the

multiplication of (%2s — %2)%. Thus the total number of

operations required to solve (41) is on the order of n3/3 +4n? =

13n'/30perations. Therefore, itmaybe more efficient to solve (40)

rather than (41) since almost the same number of operations are

involved andthesparsityof (40) can beusedto reduce the required

number of operations even further.

V. SUMMARY

Certain matrix identities among the submatrices of the chain

parameter matrix for multicoryiuctor transmission lines have been

shown. The identities reduce to familiar results for the two-conductor

transmission line where the submatrices become complex scalars.

The order of multiplication of the submatrices must be carefully

adhered to for the multiconductor case since the various matrfi

products do not in general commute. A set of matrix equations

which incorporate the termination networks for thetotal solution

of the line currents was formulated. Using the matrix identities the

coefficient matrix was reduced to a highly sparse and efficient form.
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Green’s Function in a Region with Inhomogeneous,

Isotropic Dielectric Media

MASANORI KOBAYASHI

Abstract—The reciprocity relation satisfied by the Green’s func-
tion for the ighomogeneous partial dMere@ial equation in a multi-

dielectric region with inhomogeneous, isotropic media is derived

by using Green’s theorem.

I. INTRODUCTION

The calculation of the parameters of a microstrip line based on a

TEM approximation is useful for the design of microwave integrated

circuit structures. The parameters often can be calculated by varia-

tional techniques using Green’s functions [1 ]–[5]; however, the

Green’s function satisfying the boundary conditions must be ob-

tained first.
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